You are here
Monocotyledons / Monocotiledóneas
Triticum aestivum L.
EOL Text
Throughout China [cultivated worldwide].
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | eFloras.org Copyright © Missouri Botanical Garden |
Source | http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200026445 |
Rounded Global Status Rank: GNR - Not Yet Ranked
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | NatureServe |
Source | http://explorer.natureserve.org/servlet/NatureServe?searchName=Triticum+aestivum |
Chile Central
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Pablo Gutierrez, IABIN |
Source | No source database. |
The preference is full sun, mesic to dry-mesic conditions, and soil containing loam or clay-loam. Some varieties of wheat (winter wheat) are planted during the fall, while other varieties (spring wheat) are planted during the spring.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Copyright © 2002-2014 by Dr. John Hilty |
Source | http://www.illinoiswildflowers.info/grasses/plants/wheat.html |
Widely cultivated all over the world.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | eFloras.org Copyright © Missouri Botanical Garden |
Source | http://www.efloras.org/florataxon.aspx?flora_id=1050&taxon_id=200026445 |
Common wheat (Triticum aestivum), also known as bread wheat, is a cultivated wheat species.[1][2][3][4][5] About 95% of the wheat produced is common wheat.[6]
Contents
Nomenclature and taxonomy of wheat and its cultivars[edit]
Numerous forms of wheat have evolved under human selection. This diversity has led to confusion in the naming of wheats, with names based on both genetic and morphological characteristics. For more information, see the taxonomy of wheat.
List of the common cultivars[edit]
Evolution[edit]
Bread wheat is an allohexaploid (an allopolyploid with six sets of chromosomes, two sets from each of three different species). Free-threshing wheat is closely related to spelt. As with spelt, genes contributed from goatgrass (Aegilops tauschii) give bread wheat greater cold hardiness than most wheats, and it is cultivated throughout the world's temperate regions.
Of the six sets of chromosomes, two come from Triticum urartu (einkorn wheat) and two from Aegilops speltoides. This hybridisation created the species Triticum turgidum, 580-820 thousand years ago. The last two sets of chromosomes came from Aegilops tauschii, 230-430 thousand years ago.[6][8]
History[edit]
Common wheat was first domesticated in Western Asia during the early Holocene, and spread from there to North Africa, Europe and East Asia in the prehistoric period.
Wheat first reached North America with Spanish missions in the 16th century, but North America's role as a major exporter of grain dates from the colonization of the prairies in the 1870s. As grain exports from Russia ceased in the First World War, grain production in Kansas doubled.
Worldwide, bread wheat has proved well adapted to modern industrial baking, and has displaced many of the other wheat, barley, and rye species that were once commonly used for bread making, particularly in Europe.
Plant breeding[edit]
Modern wheat varieties have short stems, the result of RHt dwarfing genes [9] that reduce the plant's sensitivity to gibberellic acid, a plant hormone that lengthens cells. RHt genes were introduced to modern wheat varieties in the 1960s by Norman Borlaug from Norin 10 cultivars of wheat grown in Japan. Short stems are important because the application of high levels of chemical fertilizers would otherwise cause the stems to grow too high, resulting in lodging (collapse of the stems). Stem heights are also even, which is important for modern harvesting techniques.
Other forms of common wheat[edit]
Compact wheats (e.g., club wheat Triticum compactum, but in India T. sphaerococcum) are closely related to common wheat, but have a much more compact ear. Their shorter rachis segments lead to spikelets packed closer together. Compact wheats are often regarded as subspecies rather than species in their own right (thus T. aestivum subsp. compactum).
References[edit]
- ^ Brenchley, R; Spannagl, M; Pfeifer, M; Barker, G. L.; d'Amore, R; Allen, A. M.; McKenzie, N; Kramer, M; Kerhornou, A; Bolser, D; Kay, S; Waite, D; Trick, M; Bancroft, I; Gu, Y; Huo, N; Luo, M. C.; Sehgal, S; Gill, B; Kianian, S; Anderson, O; Kersey, P; Dvorak, J; McCombie, W. R.; Hall, A; Mayer, K. F.; Edwards, K. J.; Bevan, M. W.; Hall, N (2012). "Analysis of the bread wheat genome using whole-genome shotgun sequencing". Nature 491 (7426): 705–10. doi:10.1038/nature11650. PMC 3510651. PMID 23192148.
- ^ Bonjean, Alain P. and William J. Angus (eds) (2001). The world wheat book : a history of wheat breeding. Andover: Intercept. p. 1131. ISBN 1-898298-72-6. Excellent resource for 20th century plant breeding.
- ^ Caligari, P.D.S. and P.E. Brandham (eds) (2001). Wheat taxonomy : the legacy of John Percival. London: Linnean Society, Linnean Special Issue 3. p. 190.
- ^ Heyne, E.G. (ed.) (1987). Wheat and wheat improvement. Madison, Wis.: American Society of Agronomy. p. 765. ISBN 0-89118-091-5.
- ^ Zohary, Daniel and Maria Hopf (2000). Domestication of Old World plants: the origin and spread of cultivated plants in West Asia. Oxford: Oxford University Press. p. 316. ISBN 0-19-850356-3. Standard reference for evolution and early history.
- ^ a b Mayer, K. F. X. (2014). "A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome". Science 345 (6194): 1251788. doi:10.1126/science.1251788. edit
- ^ a b Sanità Di Toppi, L.; Castagna, A.; Andreozzi, E.; Careri, M.; Predieri, G.; Vurro, E.; Ranieri, A. (2009). "Occurrence of different inter-varietal and inter-organ defence strategies towards supra-optimal zinc concentrations in two cultivars of Triticum aestivum L". Environmental and Experimental Botany 66 (2): 220. doi:10.1016/j.envexpbot.2009.02.008. edit
- ^ Marcussen, T. (2014). "Ancient hybridizations among the ancestral genomes of bread wheat". Science 345 (6194): 1250092. doi:10.1126/science.1250092. edit
- ^ m., E.; w., S.; k., G.; g., R.; r., R. (2002). ""Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat". TAG Theoretical and Applied Genetics 105 (6–7): 1038. doi:10.1007/s00122-002-1048-4. edit
See also[edit]
|
|
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Common_wheat&oldid=636899337 |
Widely cultivated.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | eFloras.org Copyright © Missouri Botanical Garden |
Source | http://www.efloras.org/florataxon.aspx?flora_id=110&taxon_id=200026445 |
Comments: Generally treated botanically as a species of cultivated or obscure origin "although it is not found in nature and its genome has been shown to be composed of those of" Triticum dicoccoides, T. speltoides, and T. tauschii" (cf. Intl. Code Botanical Nomen., St. Louis ed. (2000), Art. H3.3, Note 1, ex. 3 (regarding species of known hybrid origin not treated as hybrids). The name Triticum aestivum is nomenclaturally conserved over the sumiltaneously published Linnaean name T. hibernum (ICBN, St. Louis, 2000, p. 392.) LEM 17Oct01.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | NatureServe |
Source | http://explorer.natureserve.org/servlet/NatureServe?searchName=Triticum+aestivum |
Culms hollow, 60–130(–150) cm tall, ca. 5-noded; nodes glabrous. Leaf blade flat, 10–24 × 0.4–1.5 cm, usually glabrous. Spike lax or dense, usually narrowed distally, square or subsquare in cross section, 5–18 cm, with up to 29 spikelets; rachis disarticulating or tough and not disarticulating, margin ciliate; internodes 3–4 mm. Spikelets with 4–9 florets (distal florets sterile). Glumes laxly appressed or adnate to floret, ovate or elliptic, sometimes very hard, distinctly or indistinctly to obscurely keeled, pubescent or glabrous; keel sometimes prolonged at apex into shortish tooth; tooth apex subobtuse, acute, or tapering into short awn. Lemma oblong-lanceolate, pubescent or glabrous, awnless to long awned; awn usually divergent. Palea subequaling lemma. Anthers yellow or purplish. Caryopsis usually free from lemma and palea. Fl. and fr. Apr–Aug.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | eFloras.org Copyright © Missouri Botanical Garden |
Source | http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200026445 |
Annuals, Terrestrial, not aquatic, Stems nodes swollen or brittle, Stems erect or ascending, Stems caespitose, tufted, or clustered, Stems terete, round in cross section, or polygonal, Stem internodes hollow, Stems with inflorescence less than 1 m tall, Stems with inflorescence 1-2 m tall, Stems, culms, or scapes exceeding basal leaves, Leaves mostly basal, below middle of stem, Leaves mostly cauline, Leaves conspicuously 2-ranked, distichous, Leaves sheathing at base, Leaf sheath mostly open, or loose, Leaf sheath smooth, glabrous, Leaf sheath hairy, hispid or prickly, Leaf sheath hairy at summit, throat, or collar, Leaf sheath and blade differentiated, Leaf blades linear, Leaf blade auriculate, Leaf blades 1-2 cm wide, Leaf blades mostly flat, Leaf blades mostly glabrous, Leaf blades scabrous, roughened, or wrinkled, Ligule present, Ligul e an unfringed eciliate membrane, Inflorescence terminal, Inflorescence a dense slender spike-like panicle or raceme, branches contracted, Inflorescence solitary, with 1 spike, fascicle, glomerule, head, or cluster per stem or culm, Inflorescence spike linear or cylindric, several times longer than wide, Inflorescence single raceme, fascicle or spike, Inflorescence branches more than 10 to numerous, Flowers bisexual, Spikelets sessile or subsessile, Spikelets laterally compressed, Spikelet 3-10 mm wide, Spikelets with 2 florets, Spikelets with 3-7 florets, Spikelets solitary at rachis nodes, Spikelets all alike and fertille, Spikelets bisexual, Spikelets disarticulating above the glumes, glumes persistent, Spikelets disarticulating beneath or between the florets, Spikelets not disarticulating, or tardy, Spikelets closely appressed or embedded in concave portions of axis, Rachilla or pedicel glabrous, Glumes 2 clearly present, Glumes equal or subequal, Glumes shorter than adjacent lemma, Glumes awn-like, elongated or subulate, Glumes awned, awn 1-5 mm or longer, Glumes keeled or winged, Glume surface hairy, villous or pilose, Glumes 4-7 nerved, Glumes 8-15 nerved, Glumes 2-5 toothed, Lemmas thin, chartaceous, hyaline, cartilaginous, or membranous, Lemma 5-7 nerved, Lemma glabrous, Lemma apex acute or acuminate, Lemma mucronate, very shortly beaked or awned, less than 1-2 mm, Lemma distinctly awned, more than 2-3 mm, Lemma with 1 awn, Lemma awn less than 1 cm long, Lemma awn 1-2 cm long, Lemma awned from tip, Lemma awns straight or curved to base, Lemma margins thin, lying flat, Lemma straight, Palea present, well developed, Palea membranous, hyaline, Palea about equal to lemma, Palea 2 nerved or 2 keeled, Palea keels winged, scabrous, or ciliate, Stamens 3, Styles 2-fid, deeply 2-branched, Stigmas 2, Fruit - caryopsis, Caryopsis ellipsoid, longitudinally grooved, hilum long-linear, Caryopsis hairy at apex.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | Compiled from several sources by Dr. David Bogler, Missouri Botanical Garden in collaboration with the USDA NRCS NPDC |
Source | http://plants.usda.gov/java/profile?symbol=TRAE |